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High Quality Waveguides Beyond Wafer Scale

• Quality and costs are essential if AR glasses want to be the ‘next big thing’

• In 2022, we presented a viable path beyond wafer-scale for AR waveguide 

optics mass manufacturing

• ‘basic’ proof-of-concept & entire value chain that can produce AR waveguide 

optics in high-volume via large scale nano-imprint, means low costs

• Now, replication and image quality are in the focus

• Goal: further establish the new approach towards high-volume and low-cost 

manufacturing of waveguides for enabling the Metaverse
www.LightTrans.com



Complete Value Chain of Pioneers
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Accuracy in grating periodicity across large areas

Capable of designing & delivering non-periodic gratings

Large Area High-Precision Gratings 

World’s largest-area, commercially available, 

fully integrated nanoimprinting machine

Cost-effective mass manufacturing of nano/micron 

structures via large-area nanoimprinting 

Leaders of Large-Area Nanoimprinting

Founder Otto Schott is 

considered the inventor of 

optical glass and became the 

pioneer of an entire industry. 

Pioneering – responsibly – together

Always opening up new markets and applications with a 

pioneering spirit and passion – for more than 130 years. 
Enabling Smarter Future

Global market leader in automated optical 

metrology & characterization solutions for AR 

waveguides and displays throughout the entire 

product life-cycle from R&D to high volume 

manufacturing www.LightTrans.com

VirtualLab Fusion operates with a breakthrough 

technology for optical modeling & design

based on physical optics

Fast Physical Optics Modeling & Design 

Software

A powerful platform for innovative 

developments: LiDAR, AR/MR/VR 

Glasses, Laser Systems, Gratings, 

meta lenses, etc.
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Design of Waveguide – Lateral Layout

Specifications:

• 1D-1D pupil expansion

• FOV: 35°×18°

• eye-box: 15 mm × 8 mm

• eye-relief: 5 mm

• substrate: Schott 

Realview 1.9

• 1D-periodic gratings

• index of grating 

material: 1.88

binary grating

blazed grating



Design of Waveguide – Grating Parameters
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smooth variation of ridge width

/ fill factor
50nm

163nm

smooth variation

of ridge width & height

113nm

246nm

50nm

100nm

Incoupler:

• period: 415 nm

• blaze angle: 29.9°

Pupil Expander:

• period: 293.45 nm 

• width of grating ridge: 50 ‒163 nm 

(smooth variation)

• Height: 50 nm (constant)

Outcoupler:

• period: 415 nm

• width of grating ridge: 

113 ‒246 nm (smooth variation)

• Height: 50‒100 nm (smooth 

variation)
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Simulation Results of Optimized Device

(for illustration just light hitting the eyebox is 

shown)

calculated irradiance in eye-box for central 

direction

efficiency: 0.86%

lateral uniformity error: 20.2% 

(including polarization effects & rigorously calculated grating 

responses)

racing result for central direction of the FOV



analysis by using angular 

checkerboard:

one box: 5°× 6°

whole range: 45°× 30°

www.LightTrans.com8

Simulation Results of Optimized Device

45°

30°

mean efficiency: 0.62%

angular uniformity error: 80.2% 



Waveguide Optics Mastering
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Complete AR master with:

• blazed input grating

• fill factor modulated expander grating

• depth and fill factor modulated output grating



Waveguide Optics Mastering
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incoupler:outcoupler:

• fill factor modulation from 

17% (top) to 56% (bottom)

• depth modulation from 

72 nm (top) to 92 nm 

(bottom).

AFM scan of blazed input 

grating showing the sharp 

profile with 29 degrees blaze 

angle.



Surface topology impacts waveguide performance!
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Local Slope

TTV

Wedge



Technical vs. optical glass production for panels

www.LightTrans.com12



Manufacturing scaling advantage
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• Masters can be tedious & complex to originate, only a limited number of eyepieces can be made in wafer 

format

• Upscaling of masters is essential to increase throughput

Single eyepiece

Master

2
9
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300 mm

Master Upscaling

(Morphotonics proprietary)
Upscaled Submaster

30 waveguides



Manufacturing scaling advantage
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• Masters can be tedious & complex to originate, only a limited number of eyepieces can be made in wafer 

format

• Upscaling of masters is needed to increase throughput

• Roll-to-Plate (R2P) NIL can replicate multiple scaled-up masters on large substrates or smaller wafers 

grouped together

Single eyepiece

Master

Large Area R2P

Nanoimprint

Lithography (NIL)

Mass Production enabled

2
9

0
 m

m

300 mm

Master Upscaling

(Morphotonics proprietary) R2P Imprint

270 waveguides

on 9 substrates per run



Characterization of Imprinted Waveguides
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results:

• only very minor deviations due to imprint 

in general

• deviation in period of  <10 pm for the 

expander binary grating

• per step deviation in period of  <20 pm for 

the outcoupler binary grating

1) single waveguide

Grating period determined by high-end Littrow diffractometer 



Homogeneity of Imprinted Waveguides
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Grating period determined by high-end Littrow diffractometer 

Design Master Imprint sample 1

Upper right corner

Imprint sample 2

Lower left corner (same sample) 

200×200 mm apart

Incoupler 415 nm 414.97 nm 414.8 nm 414.98 nm 

Expander 293.45 nm 293.43 nm ± 2 pm 

(standard deviation)

293.35 nm ± 9 pm 

(standard deviation)

Not measured 

Outcoupler 415 nm 415.01 nm ± 7 pm 

(standard deviation)

414.88 nm ± 47 pm 

(standard deviation)

414.88 nm ± 21 pm (standard deviation)

1) single waveguide

2) wafer (30 waveguides)



Grating period determined by high-end Littrow diffractometer 
H1

H2

H3

Homogeneity of Imprinted Waveguides
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Design Master H1 H2 H3 R1 R2 R3 R4 R5 R6

Incoupler 415 414.97 414.98 414.97 414.96 414.97 414.98 414.95 414.96 414.96 414.91

Expander 293.45 293.43 

± 2 pm
293.47

± 9 pm
293.46

± 9 pm
293.44

± 7 pm
293.44

± 7 pm
293.44

± 6 pm
293.44

± 6 pm
293.44

± 6 pm
293.45

± 6 pm
293.46

± 9 pm

Outcoupler 415 415.01

± 7 pm

415.00

± 17 pm 

415.00

± 15 pm 

415.02

± 20 pm 

414.99 

± 16 pm 

414.98

± 26 pm 

414.99

± 19 pm 

414.99

± 20 pm

414.99

± 18 pm

415.00

± 24 pm

1) single waveguide

2) wafer (30 waveguides)

3) R2P imprint (270 waveguides)

(all values in nm unless denoted differently)



Grating period determined by high-end Littrow diffractometer 
H1

H2

H3

Repetition Quality of Imprinted Waveguides
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Design Master H1 H2 H3 R1 R2 R3 R4 R5 R6

Incoupler 415 414.97 414.98 414.97 414.96 414.97 414.98 414.95 414.96 414.96 414.91

Expander 293.45 293.43 

± 2 pm
293.47

± 9 pm
293.46

± 9 pm
293.44

± 7 pm
293.44

± 7 pm
293.44

± 6 pm
293.44

± 6 pm
293.44

± 6 pm
293.45

± 6 pm
293.46

± 9 pm

Outcoupler 415 415.01

± 7 pm

415.00

± 17 pm 

415.00

± 15 pm 

415.02

± 20 pm 

414.99 

± 16 pm 

414.98

± 26 pm 

414.99

± 19 pm 

414.99

± 20 pm

414.99

± 18 pm

415.00

± 24 pm

1) single waveguide

2) wafer (30 waveguides)

3) R2P imprint (270 waveguides)

4) 101 repetitions

101 

runs

R1

Run 2

R2

Run 11

R3

Run 50

R4

Run 70

R5

Run 101

R6

(all values in nm unless denoted differently)



Homogeneity and Reproducibility of Waveguides
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green:

blue:



Angular Uniformity Measurements
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green:

blue:

simulation result:

• very high 

homogeneity and 

reproducibility

• just negligible 

fluctuations

• good agreement 

with simulation 

result

checkerboard contrast and luminance uniformity measured on IEC63145 standard with OptoProjector:



Measured MTF
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green:

blue:

imprinted waveguide exhibit a comparable MTF (a) and a decent MTF 40 value

MTF measured with camera and telescope objective:



Summary

Will the shown high-volume manufacturing of AR waveguides help to trigger the 

adoption of smart glasses towards the metaverse?

• successful transition to high-volume manufacturing or AR waveguides, 

display-oriented, high-quality focused

• high-index squared glass enable the increase the production volume

• together with complex design, high-end mastering and in-depth quality 

inspection, large area nanoimprint proves that mass production is feasible

• end-to-end supply chain and cooperation of different disciplines is key

www.LightTrans.com22
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