SPIE.AR VRIMR 202

Enabling the Metaverse through mass manufacturing of industry-standard optical waveguide combiners

Stefan Steiner, LightTrans International GmbH (Germany) | Brian Bilenberg & Tobias Hedegaard Bro, NIL Technology ApS (Denmark) | Jan Matthijs ter Meulen & Erhan Ercan, Morphotonics B.V. (Netherlands) | Frederik Bachhuber, SCHOTT AG (Germany) | Alireza Rashed & Murat Deveci, Optofidelity Oy (Finland)

Agenda

• Introduction

• Nanoimprinting

- Design
- Mastering
- Materials

- Metrology
- Summary

High Quality Waveguides Beyond Wafer Scale

- Quality and costs are essential if AR glasses want to be the 'next big thing'
- In 2022, we presented a viable path beyond wafer-scale for AR waveguide optics mass manufacturing
- 'basic' proof-of-concept & entire value chain that can produce AR waveguide optics in high-volume via large scale nano-imprint, means low costs
- Now, replication and image quality are in the focus
- Goal: further establish the new approach towards high-volume and low-cost manufacturing of waveguides for enabling the Metaverse

Complete Value Chain of Pioneers

Fast Physical Optics Modeling & Design Software

VirtualLab Fusion operates with a breakthrough technology for optical modeling & design based on physical optics A powerful platform for innovative

A powerful platform for innovative developments: LiDAR, AR/MR/VR Glasses, Laser Systems, Gratings, meta lenses, etc.

Pioneering – responsibly – together

Founder Otto Schott is considered the inventor of optical glass and became the pioneer of an entire industry.

Always opening up new markets and applications with a pioneering spirit and passion – for more than 130 years.

LIGHTTRANS SCHOT morphotonics

Large Area High-Precision Gratings

Accuracy in grating periodicity across large areas Capable of designing & delivering non-periodic gratings

Leaders of Large-Area Nanoimprinting

World's largest-area, commercially available, fully integrated nanoimprinting machine

Cost-effective mass manufacturing of nano/micron structures via large-area nanoimprinting

Enabling Smarter Future

Global market leader in automated optical metrology & characterization solutions for AR waveguides and displays throughout the entire product life-cycle from R&D to high volume manufacturing

www.LightTrans.com

Design of Waveguide – Lateral Layout

Specifications:

1D-1D pupil expansion

LIGHTTRANS

- FOV: 35°×18°
- eye-box: 15mm × 8mm
- eye-relief: 5mm

- substrate: Schott Realview 1.9
- 1D-periodic gratings
- index of grating material: 1.88

Design of Waveguide – Grating Parameters

• Height: 50nm (constant)

TTRANS

Simulation Results of Optimized Device

racing result for central direction of the FOV

(for illustration just light hitting the eyebox is shown)

calculated irradiance in eye-box for central direction

(including polarization effects & rigorously calculated grating responses)

www.LightTrans.com

Simulation Results of Optimized Device

analysis by using angular checkerboard:

one box: 5°× 6°

whole range: 45°× 30°

IGHTTRANS

Waveguide Optics Mastering

Complete AR master with:

- blazed input grating
- fill factor modulated expander grating
- depth and fill factor modulated output grating

Waveguide Optics Mastering

Surface topology impacts waveguide performance!

SCHOTT

glass made of ideas

Technical vs. optical glass production for panels

SCHOTT

glass made of ideas

Manufacturing scaling advantage

- format
- Upscaling of masters is essential to increase throughput ٠

30 waveguides

de in wafer

٠

Manufacturing scaling advantage

Single eyepiece Master

- Masters can be tedious & complex to originate, or format
- Upscaling of masters is needed to increase through
- Roll-to-Plate (R2P) NIL can replicate multiple scal grouped together

www.LightTrans.com

15.0

414.7231

Grating period determined by high-end Littrow diffractometer

1) single waveguide

•

400.0000

380.0000

360.0000

340.0000

320.0000

300.0000

Homogeneity of Imprinted Waveguides

OPTOFIDELITY

Homogeneity of Imprinted Waveguides

	Design	Master	H1	H2	H3	R1	R2	R3	R4	R5	R6
Incoupler	415	414.97	414.98	414.97	414.96		414.98	414.95	414.96	414.96	
Expander	293.45	293.43 ±2 pm	293.47 ±9pm	293.46 ±9pm	293.44 ± 7 pm	293.44 ± 7 pm	293.44 ±6pm	293.44 ±6 pm	293.44 ±6 pm	293.45 ± 6 pm	293.46 ±9pm
Outcoupler	415	415.01 ±7 pm	415.00 ± 17 pm	415.00 ± 15 pm	415.02 ± 20 pm	414.99 ± 16 pm	414.98 ± 26 pm	414.99 ± 19 pm	414.99 ± 20 pm	414.99 ± 18 pm	415.00 ± 24 pm

17 (all values in nm unless denoted differently)

www.LightTrans.com

Repetition Quality of Imprinted Waveguides

	Design	Master	H1	H2	H3	R1	R2	R3	R4	R5	R6
Incoupler	415	414.97	414.98	414.97	414.96	414.97	414.98	414.95	414.96	414.96	414.91
Expander	293.45	293.43 ±2 pm	293.47 ±9pm	293.46 ±9pm	293.44 ± 7 pm	293.44 ± 7 pm	293.44 ±6pm	293.44 ±6pm	293.44 ±6pm	293.45 ±6pm	293.46 ±9pm
Outcoupler	415	415.01 ±7 pm	415.00 ± 17 pm	415.00 ± 15 pm	415.02 ± 20 pm	414.99 ± 16 pm	414.98 ± 26 pm	414.99 ± 19 pm	414.99 ± 20 pm	414.99 ± 18 pm	415.00 ± 24 pm

¹⁸ (all values in nm unless denoted differently)

www.LightTrans.com

Homogeneity and Reproducibility of Waveguides

OPTOFIDELITY

Angular Uniformity Measurements

checkerboard contrast and luminance uniformity measured on IEC63145 standard with OptoProjector:

simulation result:

green:

-	1		1	1	1	1	=	1	1	1	1		1
-	-	-	1	1	1	1	1	1		-	1	-11	-
-	-	-	1	1	-	1	=	7	1	-1	-	1	-
=	=	-	H1	1	-	-	1	1	1	1	-	-	1
1	-	-	-	-	-	#	-	12	-	1	-	1	-
-	-	-	1	1	-	-	1	-	-	1	-	-	-
					-								
-	7	7	1	1	-	7	7	-	-	-	-11	7	7
-	-	7	12	-	1	-	1	-	1	-	1	-	7
	-	-	12	-	-	1	-	-	77	-	12	7	-
-	-	-	12	-	-	1	-	H2	=	-		-	-
-	1	1	12	-	-	-	-	12	-	-	-	-	-
77	1	#	12	1	-	-	7	-	78	1	-	-	-
-	=	-	1	-	-	-	1	1	H	1	-		1
	=			1	-	-	-	=	-	7	=		-
-	-	-	-	1	-	-	1	7	1	-	7	-	-
=	=	-	-	-	-	#	1	=	1	-	-	-	H3
-	=	=	-	-	-	-	1	=	-	-	-	-	1
		-	-		-	-	-	-	-			-	1-10

- very high homogeneity and reproducibility
- just negligible fluctuations
- good agreement with simulation result

Measured MTF

MTF measured with camera and telescope objective:

imprinted waveguide exhibit a comparable MTF (a) and a decent MTF 40 value

green:

1	1		10	-	1	12		1	-	1		-11	
-	-	-	1	-		12	-	-	-11	-	-		-
-	-	-	1	1	-	1	-	-	-	-11	-	-	-
-	=	-	H1	=	-	-	1	1	1	1	-	-	1
1	7	1		-	-	#	1	12	1	1	-	T.	-
-	-	-	1	-	-	-	1	-	-	1	-	-	-
	=	-	1	-	-	7	-	-		-	THE .	7	-
	7	7	12	7	7	-	7	77	12	1	1	7	7
77	-	-	12	1	-	-	=	-	11	-	72	7	-
-	-	1	1	1	-	1	-	H2		-	1	1	-
	1	1	1	-		-	-	12	-	-	7	7	-
	-	7	12	-	-	-	7	1	-12	-	-	7	-
	-	-	1	1		-	-	-	11	1	-		1
-	-	-	-	-	-	=		-	-	1	=	-	-
-	-	-	-	1	7	-	1	7	1	-	=	-	-
=	=	-	-	-	-	-	1	=	1	-	-	-	H3
-	=	=	Ŧ	-	-	-	1	=	1	-	-	-	-
1.1		-	-	1	1	-	-	-	-	1	-		1

Will the shown high-volume manufacturing of AR waveguides help to trigger the adoption of smart glasses towards the metaverse?

- successful transition to high-volume manufacturing or AR waveguides, display-oriented, high-quality focused
- high-index squared glass enable the increase the production volume
- together with complex design, high-end mastering and in-depth quality inspection, large area nanoimprint proves that mass production is feasible
- end-to-end supply chain and cooperation of different disciplines is key

